117 research outputs found

    An introduction to the special issue on internal waves

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, No. 2 (2012):15-19, doi:10.5670/oceanog.2012.37.This special issue of Oceanography presents a survey of recent work on internal waves in the ocean. The undersea analogue to the surface waves we see breaking on beaches, internal waves play an important role in transferring heat, energy, and momentum in the ocean. When they break, the turbulence they produce is a vital aspect of the ocean's meridional overturning circulation. Numerical circulation models must parameterize internal waves and their breaking because computers will likely never be powerful enough to simultaneously resolve climate and internal wave scales. The demonstrated sensitivity of these models to the magnitude and distribution of internal wave-driven mixing is the primary motivation for the study of oceanic internal waves. Because internal waves can travel far from their source regions to where they break, progress requires understanding not only their generation but also their propagation through the eddying ocean and the processes that eventually lead to their breaking. Additionally, in certain regions such as near coasts and near strong generation regions, internal waves can develop into sharp fronts wherein the thermocline dramatically shoals hundreds of meters in only a few minutes. These "nonlinear" internal waves can have horizontal currents of several knots (1 knot is roughly 2 meters per second), and are strong enough to significantly affect surface navigation of vessels. Vertical current anomalies often reach one knot as well, posing issues for subsurface navigation and engineering structures associated with offshore energy development. Finally, the upwelling and turbulent mixing supported by internal waves can be vital for transporting nutrient-rich fluid into coastal ecosystems such as coral reefs

    Internal wave breaking near the foot of a steep East-Pacific continental slope

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in van Haren, H., Voet, G., Alford, M., & Torres, D. Internal wave breaking near the foot of a steep East-Pacific continental slope. Progress In Oceanography, 205, (2022): 102817, https://doi.org/10.1016/j.pocean.2022.102817.The sloping sides of ocean basins are of particular interest for their potential importance for considerable turbulence generation via internal wave breaking and associated water circulation. The difference with the ocean interior may be manifest in a 10–100 m relatively thin layer above the seafloor. We set up an observational study with high-resolution stand-alone instrumentation attached to a custom-made release-anchor frame sampling to within 0.5 m from the seafloor up to 150 m above it. For two months, the taut wire moored instrumentation was tested in 1100 m water depth of the East-Pacific, off the coast of San Diego (CA, USA). The mooring was oceanward of an underwater bank and near the foot of its steep but gentle two-dimensional slope. Temperature sensor data demonstrate that internal waves peak at semidiurnal frequencies. While short (<1 h) periods show complicated structure, tidally averaged turbulence dissipation rate monotonically increases towards the seafloor over two orders of magnitude. The largest turbulence dissipation rates are observed during the relatively warm phase of an internal wave. Although the local topographic slope is supercritical for semidiurnal internal waves, turbulent bores propagating up the slope and hydraulic jumps are not observed. Most of the turbulence appears to be dominated by shear production, but not related to steady frictional flow near the seafloor.This work has been partially funded from NSF-grant OCE-1756264

    Microstructure mixing observations and finescale parameterizations in the Beaufort Sea

    Get PDF
    Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35â€ČN, 145°1â€ČW. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates Δ. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and Δ at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed Δ was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of Δ= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated Δ or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112

    From Luzon Strait to Dongsha Plateau: Stages in the Life of an Internal Wave

    Get PDF
    Tidal currents in Luzon Strait south of Taiwan generate some of the largest internal waves anywhere in the ocean. Recent collaborative efforts between oceanographers from the United States and Taiwan explored the generation, evolution, and characteristics of these waves from their formation in the strait to their scattering and dissipation on Dongsha Plateau and the continental slope of mainland China. Nonlinear internal waves affect offshore engineering, navigation, biological productivity, and sediment resuspension. Observations within Luzon Strait identified exceptionally large vertical excursions of density (as expressed primarily in temperature profiles) and intense turbulence as tidal currents interact with submarine ridges. In the northern part of the strait, the ridge spacing is close to the internal semidiurnal tidal wavelength, allowing wave generation at both ridges to contribute to amplification of the internal tide. Westward radiation of semidiurnal internal tidal energy is predominant in the north, diurnal energy in the south. The competing effects of nonlinearity, which tends to steepen the stratification, and rotational dispersion, which tends to disperse energy into inertial waves, transform waves traveling across the deep basin of the South China Sea. Rotation inhibits steepening, especially for the internal diurnal tide, but despite the rotational effect, the semidiurnal tide steepens sufficiently so that nonhydrostatic effects become important, leading to the formation of a nonlinear internal wave train. As the waves encounter the continental slope and Dongsha Plateau, they slow down, steepen further, and are modified and scattered into extended wave trains. At this stage, the waves can “break,” forming trapped cores. They have the potential to trap prey, which may account for their attraction to pilot whales, which are often seen following the waves as they advance toward the coast. Interesting problems remain to be explored and are the subjects of continuing investigations

    Interacting internal waves explain global patterns of interior ocean mixing

    Full text link
    Across the stable density stratification of the abyssal ocean, deep dense water is slowly propelled upward by sustained, though irregular, turbulent mixing. The resulting mean upwelling is key to setting large-scale oceanic circulation properties, such as heat and carbon transport. It is generally accepted that in the ocean interior, this turbulent mixing is caused mainly by breaking internal waves, which are predominantly generated by winds and tides, interact nonlinearly, thereby fluxing energy down to ever smaller scales, and finally become unstable, break and mix the water column. This paradigm forms the conceptual backbone of the widely used Finescale Parameterization. This formula estimates small-scale mixing from the readily observable internal wave activity at larger scales and theoretical scaling laws for the downscale nonlinear energy flux, but has never been fully explained theoretically. Here, we close this gap using wave-wave interaction theory with input from both localized high-resolution experiments and combined global observational datasets. We find near-ubiquitous agreement between our predictions, derived from first-principles alone, and the observed mixing patterns in the global ocean interior. Our findings lay the foundations for a new type of wave-driven mixing parameterization for ocean general circulation models that is entirely physics-based, which is key to reliably represent climate states that differ substantially from today's

    Pacific abyssal transport and mixing: Through the Samoan Passage versus around the Manihiki Plateau

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1577-1592, doi:10.1175/JPO-D-18-0124.1.The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795. We thank the captain, crew, and engineers at APL/UW for their hard work and skill.2020-06-1

    The impact of oceanic near-inertial waves on climate

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 2833–2844, doi:10.1175/JCLI-D-12-00181.1.The Community Climate System Model, version 4 (CCSM4) is used to assess the climate impact of wind-generated near-inertial waves (NIWs). Even with high-frequency coupling, CCSM4 underestimates the strength of NIWs, so that a parameterization for NIWs is developed and included into CCSM4. Numerous assumptions enter this parameterization, the core of which is that the NIW velocity signal is detected during the model integration, and amplified in the shear computation of the ocean surface boundary layer module. It is found that NIWs deepen the ocean mixed layer by up to 30%, but they contribute little to the ventilation and mixing of the ocean below the thermocline. However, the deepening of the tropical mixed layer by NIWs leads to a change in tropical sea surface temperature and precipitation. Atmospheric teleconnections then change the global sea level pressure fields so that the midlatitude westerlies become weaker. Unfortunately, the magnitude of the real air-sea flux of NIW energy is poorly constrained by observations; this makes the quantitative assessment of their climate impact rather uncertain. Thus, a major result of the present study is that because of its importance for global climate the uncertainty in the observed tropical NIW energy has to be reduced.This research was funded as part of the Climate Process Team on internal wave-driven mixing with NSF Grant Nr E0968771 at NCAR.2013-11-0

    Heavy-light mesons with staggered light quarks

    Get PDF
    We demonstrate the viability of improved staggered light quarks in studies of heavy-light systems. Our method for constructing heavy-light operators exploits the close relation between naive and staggered fermions. The new approach is tested on quenched configurations using several staggered actionsn combined with nonrelativistic heavy quarks. The B_s meson kinetic mass, the hyperfine and 1P-1S splittings in B_s, and the decay constant f_{B_s} are calculated and compared to previous quenched lattice studies. An important technical detail, Bayesian curve-fitting, is discussed at length.Comment: 38 pages, figures included. v2: Entry in Table IX corrected and other minor changes, version appearing in Phys. Rev.

    Three-Dimensional Double-Ridge Internal Tide Resonance in Luzon Strait

    Get PDF
    The three-dimensional (3D) double-ridge internal tide interference in the Luzon Strait in the South China Sea is examined by comparing 3D and two-dimensional (2D) realistic simulations. Both the 3D simulations and observations indicate the presence of 3D first-mode (semi)diurnal standing waves in the 3.6-km-deep trench in the strait. As in an earlier 2D study, barotropic-to-baroclinic energy conversion, flux divergence, and dissipation are greatly enhanced when semidiurnal tides dominate relative to periods dominated by diurnal tides. The resonance in the 3D simulation is several times stronger than in the 2D simulations for the central strait. Idealized experiments indicate that, in addition to ridge height, the resonance is only a function of separation distance and not of the along-ridge length; that is, the enhanced resonance in 3D is not caused by 3D standing waves or basin modes. Instead, the difference in resonance between the 2D and 3D simulations is attributed to the topographic blocking of the barotropic flow by the 3D ridges, affecting wave generation, and a more constructive phasing between the remotely generated internal waves, arriving under oblique angles, and the barotropic tide. Most of the resonance occurs for the first mode. The contribution of the higher modes is reduced because of 3D radiation, multiple generation sites, scattering, and a rapid decay in amplitude away from the ridge
    • 

    corecore